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T H E  G R A D I E N T  A P P R O A C H  
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The results of an investigation, the purpose of which was to obtain answers to the question of where, in what direction, 

and for what load a fracture begins when there is a concentration of stresses, are presented. The gradient condition of stability 
is used to solve this problem. The application of this condition to the problem of the stretching of a plate with an elliptical 

opening, the major axis of which is inclined to the stretching axis, is considered. The results obtained are compared with 
experimental data in the literature on the fracture of plane specimens with inclined cracks. Good agreement is found between 

the theoretical and experimental data, and the universality of the two-parameter gradient conditions of  stability considered is 
noted. The gradient condition can not only be used for crack-type concentrators but also in the more general case. 

1. Discussion of the Problem. It would appear that, to determine the position where a fracture begins, it is sufficient 

to obtain the point in the body where the equivalent stress, assumed in one or another theory of breaking strength, reaches a 

maximum. However, the problem is. not so simple. The point is that in the case of a nonuniform state of  stress, in order to 
judge the breaking strength, it is necessary to know not only the value of the equivalent stress, but also the degree of 
nonuniformity of its distribution in the neighborhood of the point considered. In a number of  papers [1-5], when investigating 

brittle fracture under static and cyclic loading, the first principal stress a i is used as the equivalent stress, while the measure 

of nonuniformity is taken to be the relative gradient of the first principal stress 

gl = I g rad a~ I /a i .  (1.1) 

A nonuniform state of  stress leads to a reduction in the destructive power of the stress at the point of maximum, or, 

in other words, to a reduction in its effectiveness. However, this can also be regarded as a situation in which the maximum 
stress at the instant when fracture begins exceeds the usual breaking strength a#, which is def'med assuming a uniform state 
of stress [6-8]. For structural components with stress concentrators this phenomena finds reflection in the fact that the effective 

concentration factor is usually found to be less than the theoretical value. The gradient approach was used in [1] to estimate 
the effective concentration factor. In this paper we use the idea of the effective stress a e, to fred which we propose to use the 
gradient approach 

% = a,//Cg 0 

(a 1 is the theoretical value of the first principal stress, f(gl) > 1). When investigating brittle fracture the theoretical values of 
cr I are calculated from the elastic solution of the corresponding problem. The function f(gl) must essentially be exactly the same 
as the function which describes the increase in the local breaking strength in the gradient criteria proposed in [7, 8]. 

Consequently, using f(gl) of  the combined two-parameter strength criterion, formulated in [8], we can write 

% = a / ( 1  -13 + V~ ~ + Ltg~). (1.2) 

Here L 1 is a parameter having the dimensions of  length and which depends on the properties of  the material, i.e. the 
characteristic dimension, and/3 is a variable parameter (8 > 0), which can be regarded as an approximation parameter. 

Fracture begins at the point of the body considered when 
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The parameter L 1 is found from the condition for the gradient approach to be compatible with linear fracture mechanics 

and is found from the following equation, obtained in [7]: 

2 2 
L l = -~ KI , / o ' 2  w �9 

When this equation is satisfied the gradient breaking strength condition (1.2), (1.3) considered, in the special case of 

symmetrical crack-type stress concentrators, gives the same results as linear fracture mechanics. 

However, for asymmetrical stress concentrators the question remains open. What the result obtained using the breaking- 

strength condition (1.2), (1.3) will be for asymmetrical problems of stress concentration and to what criteria of  classical fracture 

mechanics they will most of all correspond, are unknown. Moreover, we do not know whether the maximum of the first 

principal stress erl will be identical with the maximum of  the effective stress er e. Note that for concentrators in the form of 

crack-like elliptical openings, and not mathematical cuts, the assumption that fracture begins at the point erl does not agree with 

experimental data [9]. This was pointed out by MacClintock in the discussion in [9]. Hence, an answer to the last question also 

needs to be obtained since, according to the gradient breaking-strength condition (1.2), (1.3), fracture should begin at the point 

%. 

2. Analysis of the Asymmetr ical  Problem of Stress Concentrat ion.  The choice of problem. To answer the above 

questions we will consider the application of the gradient breaking-strength condition (1.2), (1.3) to the problem of the uniaxial 

stretching of a plate with an elliptic opening, the major axis of which is inclined at an angle oa to the stretching axis (Fig. 1). 

The elastic solution of this problem is well-known [10]. It was obtained in a special complex region ~ with polar coordinates 

p, 0 and is given in terms of  complex stress functions. We can change to x, y coordinates and is given in terms of complex 

stress functions. We can change to x, y coordinates (Fig. 1) by means of the conformal transformation 

z = c (~  + m. , '~) .  (2.1) 

Here z = x + iy ; / j  = pei~ c = (a + b)/2; m = (a - -  b)/(a + b). Using the first Kolosov formula in [10] we obtain the 

following expression for the sum of the stresses a o a n d  op: 

p~ - 2p%os(20 - 2,,J) - m 2 + 2mcos(2o~) (2.2) 
O'0 + 6'0 = P p4 _ 2mp2cos(2O) + n,2 

We will assume that fracture begins on the contour of the opening, where ap = 0 and rpo = 0. Consequently, at those 

points of  the contour where a o > 0, we have a 1 = er0. It is these points that we are interested in when determining the point 

where fracture begins. Hence, using (2.2) and the fact that on the contour p = 1 we also have % = 0, we can write 

1 - 2COS(20 - 2w) - m 2 + 2mcos(2w) (2.3) 
o l = % = P  I - 2mcos(2a) + m 2 

Determinat ion  of the Relative Grad ien t .  The relative gradient gl can be found from (1.1). In order to use it we must 

first determine the modulus of the gradient of the first principal stress, which can conveniently be written in the form 
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]g rad  a~ I = ~/(&r,?On) 7 + (0c~/os) 2. 

where Oal/On is the derivative along the normal to the contour of the opening, and Oal/Os is the derivative along the tangent 

to the contour. On the part of  the contour where a 1 = %, we have atrl/aS = Otro/OS. In order to obtain the derivative along 

the normal 0at/0n, we need to write an expression for tr 1 which holds over the whole region and then differentiate it. For a 

plane state of  stress 

I 
(71 = ~-(o" e + ~ + ~/(cr e - <:rp) 2 + 41r~a ). 

Differentiation gives [ ( + /  . 

When ap = 0 and %0 = 0 we have Oat/On = Oao/On. Hence, on the contour of the opening 

] g r a d a ,  I = q(Oa , /On)  ~ + (Ooe/Os) 2 = ]g radc r  e ] .  (2.4) 

We can write the derivative along the normal in the form 

(2.5) 
Oao/On = 0(% + %)~On - O%/On. 

Since % = 0 and rp0 = 0 on the contour, it follows from the equations of equilibrium in cylindrical coordinates that 

O%/On = % / R  

(R is the radius of  curvature of  the contour at the point considered). This equation was used in [11] but contained a misprint. 

The general equation for calculating the radius of  curvature can be found, for example, in [12]. Using the coordinate O as the 

parameter we can write 

((iL,c/oo)2 + (oy/~,o)2 )3,2 
R =  

[ (ilx/oO)(O2y/oO 2) - (ily/OO)(b2x/iJo2)l 

In particular, for an elliptic opening 

R = (a2sin2(O) + b2cos2(O))3/2/(ab)" 

a(% + %) a(% + %) ap 

an ap a+t 
(2.6) 

Reverting to Eq. (2.5) we can write 

where the derivative with respect to the curvilinear coordinate p orthogonal to the contour can be found from (2.2), and when 

p = 1 c a n  b e  written as 

a(% + ~ )  -- 4 p ( l -  cos(20 - 2w)) - tre(l - tacos(20)) 

0p 1 - 2tacos(20) + nt 2 

Here a o is the found from (2.3). 

As in (2.6) we can write the derivative along the tangent to the contour from (2.4) 

a% a% a0 
Os -- 00 Os" 

The derivative of  a e with respect to the coordinate 0 can be found from (2.3), namely, 

(2.7) 
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,)% psin(20 - 2w) - %rosin(20) 
,)0 - 4 

1 - 2 t a c o s ( 2 0 )  + m 2 

It is further necessary to determine the factors in (2.6) and (2.7) 

ap ap l 
. 

On ' / (ax )  2 + (ay) 2 "/(ax/ap) 2 + (`)y/ap): ' 

`)0 ,)O 1 

as - ~/(a.~) ~ + (ay).7 - ,/(`)x/aO)2 + (oy/aO)~ �9 

From (2.1) we have 

(2.8) 

(2.9) 

(2.10) 

HI Ill �9 . 
x = c + ~- cos(O), y =  c - ~ sm~O). (2.11) 

Substituting the results of  differentiating expressions (2.11) into (2.9) and (2.10) with p = 1 we obtain 

op ao 1 I 

~n -- 0s -- V~'a:sinZ(0) + hZcos~(O) o./1 -2tacos(20) + m ~ 

After  determining all the necessary derivatives,  using them in (2.4) and carrying out some reduction we can write the 

following formula for the modulus of the gradient  ~r I: 

]grad az[ 
= (.(41)(1 - cos(20 - 2to)) - % ( 5  - 4tacos(20) - m2))  ~ 

c:(1 - 2tacos(20) + m~) 3 

. ,  ! 2 
( 4 p s i l ~ ( 2 0  -- 2CO) -- 4 % r o s i n ( 2 0 ) ) "  I 

+ t '2(l - 2 t a c o s ( 2 0 )  + /112) 3 J 

(2.12) 

F rom (1.1), using (2.3) and (2.12), we have for  the relative gradient 

(4(!  - cos(20 - 2oJ)) ( p / % )  - ( 5  - 4 t a c o s ( 2 0 )  - m2)) 2 

gl = c~'(l - 2tacos(20) + rn2) 3 

( 4 s i n ( 2 0  - 2 w )  ( p / % )  - 4 r o s i n ( 2 0 ) ) :  / z/2 

(2.13) 

When determining the relative gradient  we also used another method of calculating the derivat ive &to~On, which consists 

of  the following. Using the second Kolosov formula we find a relation for the difference between the stresses ~r 0 and %.  Adding 

it to ( 2 . 2 )w e  obtain an equation for a0, f rom which, by differentiation, we obtain the required expression for &r0/On. However ,  

in view of  its length we will  not give it here.  The method considered in the previous pages,  which does not require the use 

753 



of the second Kolosov formula and which considerably simplifies the calculation of the derivative &r0/0n and the relative 

gradient for problems on stress concentration, is much more convenient. 
Determinat ion  of  the  Point where F rac tu re  Begins, Its Direction and the Limit ing Load.  Expression (2.13) for 

gt must be substituted into (1.2) and the point on the contour where the maximum effective stress % is reached must be 

obtained. It is at this point that fracture should begin when the condition o e = tr B is satisfied. This procedure was carried out 

on a computer. We will denote the coordinate of the point at which the maximum of o e is reached by O r. The tangent of the 

angle ~ between the abscissa axis and the ry emerging from the center of the opening to the point on the contour with 

coordinate 0 = O r (see Fig. 1), using (2.11), can be written in the form 

1 - m 

t~;(~') - 1 + m tg(0).  

Consequently, 

( 1 - m 
;., = a r c l g ( ~  t g ( 0 )  J 

Knowing the point where fracture begins we can now determine the direction in which it develops. We will assume 

that the fracture occurs along the normal to the contour. In view of the orthogonality of the contour of  the curvilinear 

coordinate p, the tangent of  the angle ~ between the abscissa axis and the normal to the contour is (see Fig. 1) 

oy/op 
tg(~o) - Ox/Op" 

After differentiating (2.11) and putting p = 1 we obtain 

Consequently, 

I + m 

tg(~o) - 1 - m tg(O). 

( I -t- m 
= arctg[l  _---S-~n tg(0)J . (2.14) 

Finally, we determine the breaking load. Knowing O r and using (2.3) we obtain the value of the first principal stress 

(2.15) 
G 1 = a, p ,  

where o~ r is understood to mean the stress intensity factor at this point 

1 - 2 c o s ( 2 0  - 2(o) - m 2 + 2mcos(2~o)  

I - 2mcos(20) + m 2 

After substituting (2.15) into (1.2), from the stability condition % = a a we have the following expression for the nominal 

limiting stress: 

1 
p, = ~cr(l - fl + ~/fl" + Ltg:). (2.16) 

Comparison of the Calculated and Experimental Data. An analysis of the literature showed that it is possible to 

compare the results of calculations obtained using the gradient stability condition with existing experimental data on the fracture 

of plane specimens with inclined cracks. Since actual cracks differ from the mathematical cuts of zero width, a crack cannot 

be modelled by a mathematical cut, but an elliptical opening of narrow width is physically more justified and more convenient 

for using the gradient condition for fracture (1.2), (1.3). 

Experimental data on the fracture of plane specimens with inclined cracks made of polymethylmetacrylate are given 

in [13]. A value of the crack resistance K1c = 1.37 MPa m I/2 is given. But, unfortunately, no value of the breaking strength 

c, a and the parameter fl are given for this material. It was assumed that the breaking strength is equal to the critical 

circumferential stress Pc on the critical radius c = 0.0508 ram, given in [13]. With this assumption it is easy to determine that 

ira = 76.6 MPa. This value agrees with the data given in [14]. Knowing Klc and ira and using (1.4) we can calculate the 
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characteristic dimensions in the gradient condition for fracture L 1 = 0.203 mm. By processing the experimental results given 

in [15] we obtain a value of the parameter t3 close to zero for polymethylmetacrylate. Hence we will assume that/3 = 0. 

The small circles in Fig. 2 show the values of the angle ~o between the initial fracture line and the direction of 

propagation of the crack, determined in [13], for cuts close in form to an elliptical opening (a = 17.78 mm and b = 0.127 

mm). Curve 1 in this figure represents the results of a calculation using (2.14), for the above parameters, of  the angle ~o 

between the abscissa axis and the direction in which the crack develops from a contour of an elliptical opening (a/L 1 = 87.5 

and b/L 1 = 0.625). One can see that there is fairly good agreement between the calculated and experimental data. If  we take 

into account the increase in the width of the cut before fracture, the calculated values of  ~o will lie between Curves 1 and 2. 

Curve 2 was obtained for b = 0.197 mm, which corresponds to an increase in the width of the cut before fracture with ~ = 

7r/2 and E = 2940 MPa for polymethylmetacrylate [15]. 

The dark points in Fig. 2 show the values of the angle ~o found in [16] for specimens of polyurethane. Unfortunately, 

the characteristics of this material and the width of the cuts required for calculations are not given in [16]. Note that Curve 

1 also describes the experimental data for polyurethane quite well. This also applies not only to the angle ~o but also to the 

nominal limiting stress Pr, the normalized experimental values of which are shown in Fig. 3 by the points, while Curves 1 in 

Figs. 2 and 3 were obtained for the same parameters. Curve 2 in Fig. 3 differs from Curve 1 in the fact that it was drawn for 

the results of calculations with/3 = 0.5 and better corresponds to the experimental data. 

Hence, using the gradient condition for the fracture strength (1.2), (1.3) we can describe the experimental results on 

the fracture of plane specimens with inclined cracks given in the literature. Of course, these results can also be described using 

other criteria of classical fracture mechanics. However, the gradient condition for fracture is more universal and enables one 

to estimate the breaking strength of bodies with defects of different configurations, not just cracks, much more simply than 

when using other conditions [17]. We can thus expect new results in this area that are interesting from both the practical and 

scientific points of view. 
It is useful to note that the use of the gradient condition for fracture at the point where a o and not % is a maximum 

on the contour of the opening for crack-like defects leads to disagreement between the calculated and experimental values 

(curves 3 in Figs. 2 and 3, obtained for the same parameters as curve 1). 

When we attempted to use not the modulus of the gradient [ grader 1 [ but its projection on the normal to the contour 

] O~l/On ] in the gradient condition for fracture we obtained absurd results. For example, for the parameters given earlier 

and oa = 7r/2 it turned-out that the angle ~o is equal to - 5 5  ~ and not zero, as follows from consideration of symmetry. The 

breaking load here turned out to be one-seventh of that obtained using the well-known criteria of fracture mechanics. 

The above examples and the results of calculations show that the initial formulation of the gradient condition for the 

breaking strength in the form (1.2), (1.3) is correct. The method considered enables us, without appreciable difficulties, to 

apply it not only to the problem of the stretching of plates with elliptic openings, but also for other forms of stress 

concentrators. Hence, using the gradient condition of the breaking strength we can obtain information on the breaking load, 

and the point and direction of a fracture for a wide range of problems, including those areas where the use of  existing criteria 

of crack mechanics and the classical criteria of breaking strength are problematical. 

This research was supported f'mancially by the Russian Fund for Fundamental Research (Project Code 93-013-16526). 
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